Zep Collection
The Zep Collection node is a vector store implementation using Zep, an open-source platform for building LLM apps. It allows for upsert of embedded data and performing similarity or MMR (Maximal Marginal Relevance) search upon query.
Node Details
-
Name: zep
-
Type: Zep
-
Version: 2.0
-
Category: Vector Stores
Base Classes
-
Zep
-
VectorStoreRetriever
-
BaseRetriever
Parameters
Input Parameters
-
Document (optional)
-
Type: Document
-
List: true
-
Description: The documents to be stored in the vector store.
-
-
Embeddings
-
Type: Embeddings
-
Description: The embedding model to use for vectorizing the documents.
-
-
Base URL
-
Type: string
-
Default: “http://127.0.0.1:8000”
-
Description: The base URL of the Zep instance.
-
-
Zep Collection
-
Type: string
-
Description: The name of the Zep collection to use.
-
-
Zep Metadata Filter (optional)
-
Type: json
-
Description: A JSON object to filter documents based on metadata.
-
-
Embedding Dimension
-
Type: number
-
Default: 1536
-
Description: The dimension of the embedding vectors.
-
-
Top K (optional)
-
Type: number
-
Default: 4
-
Description: The number of top results to fetch.
-
-
MMR-related parameters (added through addMMRInputParams function)
Credential Parameters
-
API Key (optional)
-
Type: credential
-
Description: JWT authentication for the Zep instance.
-
Outputs
-
Zep Retriever
-
Type: retriever
-
Base Classes: [Zep, VectorStoreRetriever, BaseRetriever]
-
-
Zep Vector Store
-
Type: vectorStore
-
Base Classes: [Zep, ZepVectorStore]
-
Functionality
The Zep_VectorStores node provides two main functionalities:
-
Upsert: Allows adding new documents to the Zep collection. It processes the input documents, applies the specified embeddings, and stores them in the Zep vector store.
-
Similarity Search: Enables querying the vector store for similar documents. It supports both standard similarity search and MMR search for diverse results.
Usage
This node is particularly useful for:
-
Building knowledge bases or document retrieval systems
-
Implementing semantic search functionality in applications
-
Creating question-answering systems with context retrieval
The node can be integrated into larger workflows where document storage, retrieval, and similarity search are required, making it a versatile component for various LLM-powered applications.