Zep Collection

Node Details

  • Name: zep
  • Type: Zep
  • Version: 2.0
  • Category: Vector Stores

Base Classes

  • Zep
  • VectorStoreRetriever
  • BaseRetriever

Parameters

Input Parameters

  1. Document (optional)
    • Type: Document
    • List: true
    • Description: The documents to be stored in the vector store.
  2. Embeddings
    • Type: Embeddings
    • Description: The embedding model to use for vectorizing the documents.
  3. Base URL
  4. Zep Collection
    • Type: string
    • Description: The name of the Zep collection to use.
  5. Zep Metadata Filter (optional)
    • Type: json
    • Description: A JSON object to filter documents based on metadata.
  6. Embedding Dimension
    • Type: number
    • Default: 1536
    • Description: The dimension of the embedding vectors.
  7. Top K (optional)
    • Type: number
    • Default: 4
    • Description: The number of top results to fetch.
  8. MMR-related parameters (added through addMMRInputParams function)

Credential Parameters

  • API Key (optional)
    • Type: credential
    • Description: JWT authentication for the Zep instance.

Outputs

  1. Zep Retriever
    • Type: retriever
    • Base Classes: [Zep, VectorStoreRetriever, BaseRetriever]
  2. Zep Vector Store
    • Type: vectorStore
    • Base Classes: [Zep, ZepVectorStore]

Functionality

The Zep_VectorStores node provides two main functionalities:
  1. Upsert: Allows adding new documents to the Zep collection. It processes the input documents, applies the specified embeddings, and stores them in the Zep vector store.
  2. Similarity Search: Enables querying the vector store for similar documents. It supports both standard similarity search and MMR search for diverse results.

Usage

This node is particularly useful for:
  • Building knowledge bases or document retrieval systems
  • Implementing semantic search functionality in applications
  • Creating question-answering systems with context retrieval
The node can be integrated into larger workflows where document storage, retrieval, and similarity search are required, making it a versatile component for various LLM-powered applications.