Skip to main content
Node Details
-
Name: Faiss
-
Type: Faiss
-
Version: 1.0
-
Category: Vector Stores
Base Classes
-
Faiss
-
VectorStoreRetriever
-
BaseRetriever
-
Document (optional, list)
-
Type: Document
-
Description: List of documents to be stored in the vector store
-
Embeddings
-
Type: Embeddings
-
Description: Embedding model used to convert documents into vector representations
-
Base Path to load
-
Type: string
-
Description: Path to load or save the faiss.index file
-
Placeholder:
C:\Users\User\Desktop
-
Top K (optional, additional parameter)
-
Type: number
-
Description: Number of top results to fetch (default: 4)
-
Placeholder: 4
Outputs
-
Faiss Retriever
-
Name: retriever
-
Base Classes: [Faiss, VectorStoreRetriever, BaseRetriever]
-
Faiss Vector Store
-
Name: vectorStore
-
Base Classes: [Faiss, …FaissStore base classes]
Functionality
The Faiss Vector Store node provides two main functions:
-
Upsert:
-
Processes input documents
-
Creates vector embeddings using the provided embedding model
-
Stores the vectors in a Faiss index
-
Saves the index to the specified base path
-
Init:
-
Loads an existing Faiss index from the specified base path
-
Creates either a retriever or a vector store based on the output selection
-
Configures the similarity search function to avoid illegal invocation errors
Use Cases
-
Efficient similarity search in large document collections
-
Building retrieval-augmented generation (RAG) systems
-
Creating semantic search engines
-
Implementing recommendation systems based on content similarity
Notes
-
The node includes a custom implementation of
similaritySearchVectorWithScore to handle potential issues with the number of requested results exceeding the total number of stored vectors.
-
It’s designed to work seamlessly within a larger system, likely a node-based workflow for natural language processing tasks.