Meilisearch Vector Store

Node Details

  • Name: meilisearch
  • Type: Meilisearch
  • Version: 1.0
  • Category: Vector Stores

Base Classes

  • BaseRetriever

Inputs

  1. Document (optional, list)
    • Type: Document
    • Description: List of documents to be embedded and stored
  2. Embeddings
    • Type: Embeddings
    • Description: Embedding model to use for vectorizing documents
  3. Host
    • Type: string
    • Description: URL for the desired Meilisearch instance (must not end with a ’/’)
  4. Index Uid
    • Type: string
    • Description: UID for the index to answer from
  5. Delete Index if exists (optional)
    • Type: boolean
    • Description: Whether to delete the existing index before upserting
  6. Top K (optional, additional param)
    • Type: number
    • Description: Number of top searches to return as context (default is 4)
  7. Semantic Ratio (optional, additional param)
    • Type: number
    • Description: Percentage of semantic reasoning in Meilisearch hybrid search (default is 0.75)
  8. Search Filter (optional, additional param)
    • Type: string
    • Description: Search filter to apply on searchable attributes

Outputs

  • Meilisearch Retriever
    • Name: retriever
    • Base Classes: [BaseRetriever]
    • Description: Retriever for getting answers from the Meilisearch index

Credentials

  • Credential Name: meilisearchApi
  • Parameters:
    • meilisearchAdminApiKey
    • meilisearchSearchApiKey

Functionality

  1. Upsert:
    • Embeds documents using the provided embedding model
    • Creates or updates a Meilisearch index with the embedded documents
    • Handles index deletion if requested
    • Sets up necessary index settings for vector search
  2. Initialization:
    • Sets up the Meilisearch client with the provided credentials
    • Enables vector store features in Meilisearch
    • Creates a MeilisearchRetriever instance for similarity search

Usage

This node is particularly useful for:
  • Creating and managing document embeddings in a Meilisearch index
  • Performing hybrid (keyword + semantic) searches on stored documents
  • Integrating Meilisearch’s vector search capabilities into a larger workflow
The node handles the complexities of document embedding, index management, and retrieval setup, making it easier to leverage Meilisearch’s capabilities in a vector store context.