
Node Details
- Name: meilisearch
- Type: Meilisearch
- Version: 1.0
- Category: Vector Stores
Base Classes
- BaseRetriever
Inputs
-
Document (optional, list)
- Type: Document
- Description: List of documents to be embedded and stored
-
Embeddings
- Type: Embeddings
- Description: Embedding model to use for vectorizing documents
-
Host
- Type: string
- Description: URL for the desired Meilisearch instance (must not end with a ’/’)
-
Index Uid
- Type: string
- Description: UID for the index to answer from
-
Delete Index if exists (optional)
- Type: boolean
- Description: Whether to delete the existing index before upserting
-
Top K (optional, additional param)
- Type: number
- Description: Number of top searches to return as context (default is 4)
-
Semantic Ratio (optional, additional param)
- Type: number
- Description: Percentage of semantic reasoning in Meilisearch hybrid search (default is 0.75)
-
Search Filter (optional, additional param)
- Type: string
- Description: Search filter to apply on searchable attributes
Outputs
-
Meilisearch Retriever
- Name: retriever
- Base Classes: [BaseRetriever]
- Description: Retriever for getting answers from the Meilisearch index
Credentials
- Credential Name: meilisearchApi
-
Parameters:
- meilisearchAdminApiKey
- meilisearchSearchApiKey
Functionality
-
Upsert:
- Embeds documents using the provided embedding model
- Creates or updates a Meilisearch index with the embedded documents
- Handles index deletion if requested
- Sets up necessary index settings for vector search
-
Initialization:
- Sets up the Meilisearch client with the provided credentials
- Enables vector store features in Meilisearch
- Creates a MeilisearchRetriever instance for similarity search
Usage
This node is particularly useful for:- Creating and managing document embeddings in a Meilisearch index
- Performing hybrid (keyword + semantic) searches on stored documents
- Integrating Meilisearch’s vector search capabilities into a larger workflow