Node Details

  • Name: meilisearch

  • Type: Meilisearch

  • Version: 1.0

  • Category: Vector Stores

Base Classes

  • BaseRetriever

Inputs

  1. Document (optional, list)

    • Type: Document

    • Description: List of documents to be embedded and stored

  2. Embeddings

    • Type: Embeddings

    • Description: Embedding model to use for vectorizing documents

  3. Host

    • Type: string

    • Description: URL for the desired Meilisearch instance (must not end with a ’/’)

  4. Index Uid

    • Type: string

    • Description: UID for the index to answer from

  5. Delete Index if exists (optional)

    • Type: boolean

    • Description: Whether to delete the existing index before upserting

  6. Top K (optional, additional param)

    • Type: number

    • Description: Number of top searches to return as context (default is 4)

  7. Semantic Ratio (optional, additional param)

    • Type: number

    • Description: Percentage of semantic reasoning in Meilisearch hybrid search (default is 0.75)

  8. Search Filter (optional, additional param)

    • Type: string

    • Description: Search filter to apply on searchable attributes

Outputs

  • Meilisearch Retriever

    • Name: retriever

    • Base Classes: [BaseRetriever]

    • Description: Retriever for getting answers from the Meilisearch index

Credentials

  • Credential Name: meilisearchApi

  • Parameters:

    • meilisearchAdminApiKey

    • meilisearchSearchApiKey

Functionality

  1. Upsert:

    • Embeds documents using the provided embedding model

    • Creates or updates a Meilisearch index with the embedded documents

    • Handles index deletion if requested

    • Sets up necessary index settings for vector search

  2. Initialization:

    • Sets up the Meilisearch client with the provided credentials

    • Enables vector store features in Meilisearch

    • Creates a MeilisearchRetriever instance for similarity search

Usage

This node is particularly useful for:

  • Creating and managing document embeddings in a Meilisearch index

  • Performing hybrid (keyword + semantic) searches on stored documents

  • Integrating Meilisearch’s vector search capabilities into a larger workflow

The node handles the complexities of document embedding, index management, and retrieval setup, making it easier to leverage Meilisearch’s capabilities in a vector store context.