Skip to main content
Node Details
-
Name: meilisearch
-
Type: Meilisearch
-
Version: 1.0
-
Category: Vector Stores
Base Classes
-
Document (optional, list)
-
Type: Document
-
Description: List of documents to be embedded and stored
-
Embeddings
-
Type: Embeddings
-
Description: Embedding model to use for vectorizing documents
-
Host
-
Type: string
-
Description: URL for the desired Meilisearch instance (must not end with a ’/’)
-
Index Uid
-
Type: string
-
Description: UID for the index to answer from
-
Delete Index if exists (optional)
-
Type: boolean
-
Description: Whether to delete the existing index before upserting
-
Top K (optional, additional param)
-
Type: number
-
Description: Number of top searches to return as context (default is 4)
-
Semantic Ratio (optional, additional param)
-
Type: number
-
Description: Percentage of semantic reasoning in Meilisearch hybrid search (default is 0.75)
-
Search Filter (optional, additional param)
-
Type: string
-
Description: Search filter to apply on searchable attributes
Outputs
-
Meilisearch Retriever
-
Name: retriever
-
Base Classes: [BaseRetriever]
-
Description: Retriever for getting answers from the Meilisearch index
Credentials
-
Credential Name: meilisearchApi
-
Parameters:
-
meilisearchAdminApiKey
-
meilisearchSearchApiKey
Functionality
-
Upsert:
-
Embeds documents using the provided embedding model
-
Creates or updates a Meilisearch index with the embedded documents
-
Handles index deletion if requested
-
Sets up necessary index settings for vector search
-
Initialization:
-
Sets up the Meilisearch client with the provided credentials
-
Enables vector store features in Meilisearch
-
Creates a MeilisearchRetriever instance for similarity search
Usage
This node is particularly useful for:
-
Creating and managing document embeddings in a Meilisearch index
-
Performing hybrid (keyword + semantic) searches on stored documents
-
Integrating Meilisearch’s vector search capabilities into a larger workflow
The node handles the complexities of document embedding, index management, and retrieval setup, making it easier to leverage Meilisearch’s capabilities in a vector store context.