
title: MongoDB Atlas Vector Store description: The MongoDB Atlas Vector Store node is a component used for upserting embedded data and performing similarity or MMR (Maximal Marginal Relevance) search queries using MongoDB Atlas, a managed cloud MongoDB database. This node allows for efficient storage and retrieval of vector embeddings, making it suitable for various AI and machine learning applications.
Node Details
- Name: MongoDBAtlas_VectorStores
- Type: MongoDB Atlas
- Category: Vector Stores
- Version: 1.0
Base Classes
- MongoDB Atlas
- VectorStoreRetriever
- BaseRetriever
Parameters
Credential
- Label: Connect Credential
- Name: credential
- Type: credential
- Credential Names: mongoDBUrlApi
Inputs
-
Document
- Type: Document
- List: true
- Optional: true
-
Embeddings
- Type: Embeddings
-
Database
- Type: string
-
Placeholder:
DB_NAME
-
Collection Name
- Type: string
-
Placeholder:
<COLLECTION_NAME>
-
Index Name
- Type: string
-
Placeholder:
<VECTOR_INDEX_NAME>
-
Content Field
- Type: string
- Default: “text”
- Description: Name of the field (column) that contains the actual content
- Optional: true
-
Embedded Field
- Type: string
- Default: “embedding”
- Description: Name of the field (column) that contains the Embedding
- Optional: true
-
Top K
- Type: number
- Default: 4
- Description: Number of top results to fetch
- Optional: true
- MMR-related inputs (added via addMMRInputParams function)
Outputs
-
MongoDB Retriever
- Base Classes: [MongoDB Atlas, VectorStoreRetriever, BaseRetriever]
-
MongoDB Vector Store
- Base Classes: [MongoDB Atlas, MongoDBAtlasVectorSearch]
Functionality
Upsert Method
- Adds documents and their embeddings to the MongoDB Atlas database
- Returns the number of added documents and the added documents themselves
Init Method
- Initializes the MongoDB Atlas vector store or retriever
- Sets up the connection to the MongoDB Atlas database
- Creates a MongoDBAtlasVectorSearch instance for vector operations
Usage
This node is particularly useful for:- Storing document embeddings in a scalable, cloud-based MongoDB solution
- Performing similarity searches on stored embeddings
- Integrating vector search capabilities into larger AI and machine learning workflows