MongoDB Atlas Vector Store
The MongoDB Atlas Vector Store node is a component used for upserting embedded data and performing similarity or MMR (Maximal Marginal Relevance) search queries using MongoDB Atlas, a managed cloud MongoDB database. This node allows for efficient storage and retrieval of vector embeddings, making it suitable for various AI and machine learning applications.
title: MongoDB Atlas Vector Store description: The MongoDB Atlas Vector Store node is a component used for upserting embedded data and performing similarity or MMR (Maximal Marginal Relevance) search queries using MongoDB Atlas, a managed cloud MongoDB database. This node allows for efficient storage and retrieval of vector embeddings, making it suitable for various AI and machine learning applications.
Node Details
-
Name: MongoDBAtlas_VectorStores
-
Type: MongoDB Atlas
-
Category: Vector Stores
-
Version: 1.0
Base Classes
-
MongoDB Atlas
-
VectorStoreRetriever
-
BaseRetriever
Parameters
Credential
-
Label: Connect Credential
-
Name: credential
-
Type: credential
-
Credential Names: mongoDBUrlApi
Inputs
-
Document
-
Type: Document
-
List: true
-
Optional: true
-
-
Embeddings
- Type: Embeddings
-
Database
-
Type: string
-
Placeholder:
DB_NAME
-
-
Collection Name
-
Type: string
-
Placeholder:
<COLLECTION_NAME>
-
-
Index Name
-
Type: string
-
Placeholder:
<VECTOR_INDEX_NAME>
-
-
Content Field
-
Type: string
-
Default: “text”
-
Description: Name of the field (column) that contains the actual content
-
Optional: true
-
-
Embedded Field
-
Type: string
-
Default: “embedding”
-
Description: Name of the field (column) that contains the Embedding
-
Optional: true
-
-
Top K
-
Type: number
-
Default: 4
-
Description: Number of top results to fetch
-
Optional: true
-
-
MMR-related inputs (added via addMMRInputParams function)
Outputs
-
MongoDB Retriever
- Base Classes: [MongoDB Atlas, VectorStoreRetriever, BaseRetriever]
-
MongoDB Vector Store
- Base Classes: [MongoDB Atlas, MongoDBAtlasVectorSearch]
Functionality
Upsert Method
-
Adds documents and their embeddings to the MongoDB Atlas database
-
Returns the number of added documents and the added documents themselves
Init Method
-
Initializes the MongoDB Atlas vector store or retriever
-
Sets up the connection to the MongoDB Atlas database
-
Creates a MongoDBAtlasVectorSearch instance for vector operations
Usage
This node is particularly useful for:
-
Storing document embeddings in a scalable, cloud-based MongoDB solution
-
Performing similarity searches on stored embeddings
-
Integrating vector search capabilities into larger AI and machine learning workflows
The node handles connection management, ensuring efficient use of database resources by maintaining a singleton client instance.
Note
Users need to provide valid MongoDB Atlas credentials and ensure that their Atlas cluster is properly configured for vector search operations.