Node Details

  • Name: zepCloud

  • Type: Zep

  • Version: 2.0

  • Category: Vector Stores

Base Classes

  • Zep

  • VectorStoreRetriever

  • BaseRetriever

Credentials

  • Type: JWT authentication

  • Name: zepMemoryApi

  • Description: Configure JWT authentication for your Zep instance (Optional)

Input Parameters

  1. Document (optional)

    • Type: Document

    • List: true

    • Description: Input documents to be stored in the Zep collection

  2. Zep Collection

    • Type: string

    • Placeholder: my-first-collection

    • Description: Name of the Zep collection to use

  3. Zep Metadata Filter (optional)

    • Type: json

    • Description: JSON filter to apply on metadata when retrieving documents

  4. Top K (optional)

    • Type: number

    • Default: 4

    • Description: Number of top results to fetch

  5. MMR Parameters (optional)

    • Fetch K

    • MMR Lambda

    • Description: Parameters for Maximal Marginal Relevance search

Outputs

  1. Zep Retriever

    • Type: Retriever

    • Base Classes: [Zep, VectorStoreRetriever, BaseRetriever]

  2. Zep Vector Store

    • Type: Vector Store

    • Base Classes: [Zep, ZepVectorStore]

Functionality

  1. Upsert:

    • Adds or updates documents in the Zep collection

    • Returns the number of added documents and the added documents themselves

  2. Init:

    • Initializes the Zep vector store with the given configuration

    • Sets up metadata filters if provided

    • Returns either a vector store or a retriever based on the node data

Usage

This node is particularly useful for:

  1. Storing and retrieving embedded data in a scalable manner

  2. Performing similarity searches on stored data

  3. Implementing MMR search for diverse result retrieval

  4. Integrating Zep’s vector store capabilities into larger language model applications

Note

The node uses FakeEmbeddings for document storage, which means it expects pre-embedded documents. For production use, you should replace this with actual embedding functionality.