Zep Collection - Cloud
The Zep Collection - Cloud node is a vector store component that integrates with Zep, a fast and scalable building block for LLM applications. It allows for upsert of embedded data and performs similarity or MMR (Maximal Marginal Relevance) search upon query.
Node Details
-
Name: zepCloud
-
Type: Zep
-
Version: 2.0
-
Category: Vector Stores
Base Classes
-
Zep
-
VectorStoreRetriever
-
BaseRetriever
Credentials
-
Type: JWT authentication
-
Name: zepMemoryApi
-
Description: Configure JWT authentication for your Zep instance (Optional)
Input Parameters
-
Document (optional)
-
Type: Document
-
List: true
-
Description: Input documents to be stored in the Zep collection
-
-
Zep Collection
-
Type: string
-
Placeholder: my-first-collection
-
Description: Name of the Zep collection to use
-
-
Zep Metadata Filter (optional)
-
Type: json
-
Description: JSON filter to apply on metadata when retrieving documents
-
-
Top K (optional)
-
Type: number
-
Default: 4
-
Description: Number of top results to fetch
-
-
MMR Parameters (optional)
-
Fetch K
-
MMR Lambda
-
Description: Parameters for Maximal Marginal Relevance search
-
Outputs
-
Zep Retriever
-
Type: Retriever
-
Base Classes: [Zep, VectorStoreRetriever, BaseRetriever]
-
-
Zep Vector Store
-
Type: Vector Store
-
Base Classes: [Zep, ZepVectorStore]
-
Functionality
-
Upsert:
-
Adds or updates documents in the Zep collection
-
Returns the number of added documents and the added documents themselves
-
-
Init:
-
Initializes the Zep vector store with the given configuration
-
Sets up metadata filters if provided
-
Returns either a vector store or a retriever based on the node data
-
Usage
This node is particularly useful for:
-
Storing and retrieving embedded data in a scalable manner
-
Performing similarity searches on stored data
-
Implementing MMR search for diverse result retrieval
-
Integrating Zep’s vector store capabilities into larger language model applications
Note
The node uses FakeEmbeddings for document storage, which means it expects pre-embedded documents. For production use, you should replace this with actual embedding functionality.