Qdrant Vector Store
The Qdrant_VectorStores node is a component for integrating Qdrant, a scalable open-source vector database, into a vector store system. It allows for upsert operations, similarity searches, and retrieval of embedded data.
Node Details
-
Name: Qdrant_VectorStores
-
Type: Qdrant
-
Version: 5.0
-
Category: Vector Stores
Base Classes
-
Qdrant
-
VectorStoreRetriever
-
BaseRetriever
Input Parameters
Main Parameters
-
Document (optional, list)
-
Type: Document
-
Description: List of documents to be processed
-
-
Embeddings
-
Type: Embeddings
-
Description: Embedding model to use
-
-
Record Manager (optional)
-
Type: RecordManager
-
Description: Keeps track of records to prevent duplication
-
-
Qdrant Server URL
-
Type: string
-
Placeholder: http://localhost:6333
-
-
Qdrant Collection Name
- Type: string
-
File Upload (optional)
-
Type: boolean
-
Description: Allows file upload on the chat
-
Additional Parameters
-
Vector Dimension
-
Type: number
-
Default: 1536
-
-
Content Key (optional)
-
Type: string
-
Default: ‘content’
-
Description: Key for storing text
-
-
Metadata Key (optional)
-
Type: string
-
Default: ‘metadata’
-
Description: Key for storing metadata
-
-
Upsert Batch Size (optional)
-
Type: number
-
Description: Upsert in batches of size N
-
-
Similarity
-
Type: options
-
Options: Cosine, Euclid, Dot
-
Default: Cosine
-
-
Additional Collection Configuration (optional)
- Type: json
-
Top K (optional)
-
Type: number
-
Description: Number of top results to fetch (default: 4)
-
-
Qdrant Search Filter (optional)
-
Type: json
-
Description: Conditions for returning points
-
Outputs
-
Qdrant Retriever
-
Type: retriever
-
Base Classes: [Qdrant, VectorStoreRetriever, BaseRetriever]
-
-
Qdrant Vector Store
-
Type: vectorStore
-
Base Classes: [Qdrant, QdrantVectorStore base classes]
-
Credentials
-
Credential Name: qdrantApi
-
Parameters: qdrantApiKey
Functionality
-
Supports upsert operations for adding or updating documents in the Qdrant collection
-
Enables similarity search and retrieval of documents
-
Allows for batch processing of documents
-
Supports custom configuration for Qdrant collections
-
Integrates with a record manager to prevent duplication
-
Provides options for different similarity measures (Cosine, Euclid, Dot)
-
Supports file upload functionality in chat interfaces
Use Cases
-
Semantic search applications
-
Document retrieval systems
-
Recommendation engines
-
Any application requiring efficient storage and querying of vector embeddings
Note
This node is designed to work with the Qdrant vector database and requires proper setup of the Qdrant server. It’s particularly useful for applications dealing with large-scale vector data and requiring fast similarity searches.
Was this page helpful?