Node Details

  • Name: Qdrant_VectorStores

  • Type: Qdrant

  • Version: 5.0

  • Category: Vector Stores

Base Classes

  • Qdrant

  • VectorStoreRetriever

  • BaseRetriever

Input Parameters

Main Parameters

  1. Document (optional, list)

    • Type: Document

    • Description: List of documents to be processed

  2. Embeddings

    • Type: Embeddings

    • Description: Embedding model to use

  3. Record Manager (optional)

    • Type: RecordManager

    • Description: Keeps track of records to prevent duplication

  4. Qdrant Server URL

  5. Qdrant Collection Name

    • Type: string
  6. File Upload (optional)

    • Type: boolean

    • Description: Allows file upload on the chat

Additional Parameters

  1. Vector Dimension

    • Type: number

    • Default: 1536

  2. Content Key (optional)

    • Type: string

    • Default: ‘content’

    • Description: Key for storing text

  3. Metadata Key (optional)

    • Type: string

    • Default: ‘metadata’

    • Description: Key for storing metadata

  4. Upsert Batch Size (optional)

    • Type: number

    • Description: Upsert in batches of size N

  5. Similarity

    • Type: options

    • Options: Cosine, Euclid, Dot

    • Default: Cosine

  6. Additional Collection Configuration (optional)

    • Type: json
  7. Top K (optional)

    • Type: number

    • Description: Number of top results to fetch (default: 4)

  8. Qdrant Search Filter (optional)

    • Type: json

    • Description: Conditions for returning points

Outputs

  1. Qdrant Retriever

    • Type: retriever

    • Base Classes: [Qdrant, VectorStoreRetriever, BaseRetriever]

  2. Qdrant Vector Store

    • Type: vectorStore

    • Base Classes: [Qdrant, QdrantVectorStore base classes]

Credentials

  • Credential Name: qdrantApi

  • Parameters: qdrantApiKey

Functionality

  • Supports upsert operations for adding or updating documents in the Qdrant collection

  • Enables similarity search and retrieval of documents

  • Allows for batch processing of documents

  • Supports custom configuration for Qdrant collections

  • Integrates with a record manager to prevent duplication

  • Provides options for different similarity measures (Cosine, Euclid, Dot)

  • Supports file upload functionality in chat interfaces

Use Cases

  • Semantic search applications

  • Document retrieval systems

  • Recommendation engines

  • Any application requiring efficient storage and querying of vector embeddings

Note

This node is designed to work with the Qdrant vector database and requires proper setup of the Qdrant server. It’s particularly useful for applications dealing with large-scale vector data and requiring fast similarity searches.