
Node Details
- Name: Qdrant_VectorStores
- Type: Qdrant
- Version: 5.0
- Category: Vector Stores
Base Classes
- Qdrant
- VectorStoreRetriever
- BaseRetriever
Input Parameters
Main Parameters
-
Document (optional, list)
- Type: Document
- Description: List of documents to be processed
-
Embeddings
- Type: Embeddings
- Description: Embedding model to use
-
Record Manager (optional)
- Type: RecordManager
- Description: Keeps track of records to prevent duplication
-
Qdrant Server URL
- Type: string
- Placeholder: http://localhost:6333
-
Qdrant Collection Name
- Type: string
-
File Upload (optional)
- Type: boolean
- Description: Allows file upload on the chat
Additional Parameters
-
Vector Dimension
- Type: number
- Default: 1536
-
Content Key (optional)
- Type: string
- Default: ‘content’
- Description: Key for storing text
-
Metadata Key (optional)
- Type: string
- Default: ‘metadata’
- Description: Key for storing metadata
-
Upsert Batch Size (optional)
- Type: number
- Description: Upsert in batches of size N
-
Similarity
- Type: options
- Options: Cosine, Euclid, Dot
- Default: Cosine
-
Additional Collection Configuration (optional)
- Type: json
-
Top K (optional)
- Type: number
- Description: Number of top results to fetch (default: 4)
-
Qdrant Search Filter (optional)
- Type: json
- Description: Conditions for returning points
Outputs
-
Qdrant Retriever
- Type: retriever
- Base Classes: [Qdrant, VectorStoreRetriever, BaseRetriever]
-
Qdrant Vector Store
- Type: vectorStore
- Base Classes: [Qdrant, QdrantVectorStore base classes]
Credentials
- Credential Name: qdrantApi
- Parameters: qdrantApiKey
Functionality
- Supports upsert operations for adding or updating documents in the Qdrant collection
- Enables similarity search and retrieval of documents
- Allows for batch processing of documents
- Supports custom configuration for Qdrant collections
- Integrates with a record manager to prevent duplication
- Provides options for different similarity measures (Cosine, Euclid, Dot)
- Supports file upload functionality in chat interfaces
Use Cases
- Semantic search applications
- Document retrieval systems
- Recommendation engines
- Any application requiring efficient storage and querying of vector embeddings