Worker
The Worker node represents an individual specialized agent in a multi-agent system, capable of performing specific tasks autonomously using various tools and following configured instructions.
Node Details
-
Name: worker
-
Type: Worker
-
Version: 2.0
-
Category: Multi Agents
Base Classes
-
Worker_MultiAgents
-
(Additional base classes from Worker implementation)
Parameters
Inputs
-
Worker Name (Required)
-
Type: string
-
Description: Unique identifier for the worker agent
-
-
Worker Prompt (Required)
-
Type: string
-
Default: “You are a research assistant who can search for up-to-date info using search engine.”
-
Description: Defines the worker’s behavior and specialization
-
-
Tools (Optional)
-
Type: Tool[]
-
Description: List of tools available to the worker for task execution
-
-
Supervisor (Required)
-
Type: Supervisor
-
Description: Reference to the supervising node
-
-
Tool Calling Chat Model (Optional)
-
Type: BaseChatModel
-
Description: Language model for tool interactions
-
Default: Uses supervisor’s model if not specified
-
Compatible Models:
-
ChatOpenAI
-
ChatMistral
-
ChatAnthropic
-
ChatGoogleGenerativeAI
-
ChatVertexAI
-
GroqChat
-
-
-
Format Prompt Values (Optional)
-
Type: json
-
Description: Values for input variables in the worker prompt
-
-
Max Iterations (Optional)
-
Type: number
-
Description: Maximum execution iterations allowed
-
Functionality
-
Task Execution
-
Autonomous operation
-
Tool utilization
-
Task specialization
-
Multi-modal support
-
-
Integration Features
-
Supervisor coordination
-
Tool management
-
State handling
-
Error management
-
-
Process Control
-
Iteration management
-
Abort handling
-
Progress tracking
-
Resource optimization
-
Use Cases
-
Specialized Research
-
Information gathering
-
Data analysis
-
Source verification
-
Report generation
-
-
Tool-Based Tasks
-
API interactions
-
Data processing
-
Resource management
-
System integration
-
-
Collaborative Work
-
Team coordination
-
Task specialization
-
Result sharing
-
Progress reporting
-
Integration Notes
-
Requires proper supervisor configuration
-
Supports multi-modal content
-
Handles tool integration seamlessly
-
Manages state persistence
Best Practices
-
Configuration
-
Clear role definition
-
Appropriate tool selection
-
Optimal prompt design
-
Resource allocation
-
-
Error Handling
-
Input validation
-
Tool error management
-
State recovery
-
Graceful degradation
-
-
Performance Optimization
-
Tool usage efficiency
-
Prompt optimization
-
Iteration control
-
Resource management
-
-
Maintenance
-
Regular prompt updates
-
Tool verification
-
Performance monitoring
-
Error pattern analysis
-