Node Details

  • Name: worker

  • Type: Worker

  • Version: 2.0

  • Category: Multi Agents

Base Classes

  • Worker_MultiAgents

  • (Additional base classes from Worker implementation)

Parameters

Inputs

  1. Worker Name (Required)

    • Type: string

    • Description: Unique identifier for the worker agent

  2. Worker Prompt (Required)

    • Type: string

    • Default: “You are a research assistant who can search for up-to-date info using search engine.”

    • Description: Defines the worker’s behavior and specialization

  3. Tools (Optional)

    • Type: Tool[]

    • Description: List of tools available to the worker for task execution

  4. Supervisor (Required)

    • Type: Supervisor

    • Description: Reference to the supervising node

  5. Tool Calling Chat Model (Optional)

    • Type: BaseChatModel

    • Description: Language model for tool interactions

    • Default: Uses supervisor’s model if not specified

    • Compatible Models:

      • ChatOpenAI

      • ChatMistral

      • ChatAnthropic

      • ChatGoogleGenerativeAI

      • ChatVertexAI

      • GroqChat

  6. Format Prompt Values (Optional)

    • Type: json

    • Description: Values for input variables in the worker prompt

  7. Max Iterations (Optional)

    • Type: number

    • Description: Maximum execution iterations allowed

Functionality

  1. Task Execution

    • Autonomous operation

    • Tool utilization

    • Task specialization

    • Multi-modal support

  2. Integration Features

    • Supervisor coordination

    • Tool management

    • State handling

    • Error management

  3. Process Control

    • Iteration management

    • Abort handling

    • Progress tracking

    • Resource optimization

Use Cases

  1. Specialized Research

    • Information gathering

    • Data analysis

    • Source verification

    • Report generation

  2. Tool-Based Tasks

    • API interactions

    • Data processing

    • Resource management

    • System integration

  3. Collaborative Work

    • Team coordination

    • Task specialization

    • Result sharing

    • Progress reporting

Integration Notes

  • Requires proper supervisor configuration

  • Supports multi-modal content

  • Handles tool integration seamlessly

  • Manages state persistence

Best Practices

  1. Configuration

    • Clear role definition

    • Appropriate tool selection

    • Optimal prompt design

    • Resource allocation

  2. Error Handling

    • Input validation

    • Tool error management

    • State recovery

    • Graceful degradation

  3. Performance Optimization

    • Tool usage efficiency

    • Prompt optimization

    • Iteration control

    • Resource management

  4. Maintenance

    • Regular prompt updates

    • Tool verification

    • Performance monitoring

    • Error pattern analysis