
Node Details
- Name: Supervisor
- Type: Supervisor
- Category: Multi Agents
- Version: 3.0
Base Classes
- Supervisor
- (Additional base classes from Supervisor implementation)
Parameters
Inputs
-
Supervisor Name
- Type: string
- Default: “Supervisor”
- Description: The name of the supervisor agent
-
Supervisor Prompt
- Type: string
-
Description: Custom prompt for the supervisor, must contain
{team_members}
- Default: System-provided prompt template
-
Tool Calling Chat Model (Required)
- Type: BaseChatModel
- Description: Language model used for decision-making (must support function calling)
-
Compatible Models:
- ChatOpenAI
- ChatMistral
- ChatAnthropic
- ChatGoogleGenerativeAI
- GroqChat
-
Agent Memory (Optional)
- Type: BaseCheckpointSaver
- Description: Used to save and restore the agent’s state
-
Summarization (Optional)
- Type: boolean
- Description: Enables final output as a conversation summary
-
Recursion Limit
- Type: number
- Default: 100
- Description: Maximum number of recursive calls allowed
-
Input Moderation (Optional)
- Type: Moderation[]
- Description: Filters for detecting potentially harmful text
Functionality
-
Coordination
- Manages worker agent selection
- Orchestrates conversation flow
- Monitors task progress
- Optimizes task completion
-
Decision Making
- Analyzes conversation state
- Selects appropriate workers
- Provides worker instructions
- Ensures task coherence
-
Process Management
- Handles conversation initialization
- Manages state transitions
- Controls recursion depth
- Provides optional summarization
Use Cases
-
Project Management
- Coordinate multiple specialists
- Break down complex tasks
- Monitor progress
- Ensure goal alignment
-
Problem Solving
- Distribute subtasks
- Combine expert knowledge
- Synthesize solutions
- Maintain solution quality
-
Research Coordination
- Assign research tasks
- Manage information gathering
- Validate findings
- Compile results
Integration Notes
- Best performance achieved with GPT-4
- Requires function-calling capable models
- Supports multi-modal inputs for compatible models
- Special handling for various model types
Best Practices
-
Configuration
- Set clear supervisor prompts
- Choose appropriate models
- Configure memory settings
- Set reasonable recursion limits
-
Monitoring
- Track conversation progress
- Monitor worker performance
- Watch for recursion issues
- Evaluate task completion
-
Optimization
- Fine-tune prompts
- Adjust memory settings
- Optimize model selection
- Balance task distribution