Node Details

  • Name: Supervisor

  • Type: Supervisor

  • Category: Multi Agents

  • Version: 3.0

Base Classes

  • Supervisor

  • (Additional base classes from Supervisor implementation)

Parameters

Inputs

  1. Supervisor Name

    • Type: string

    • Default: “Supervisor”

    • Description: The name of the supervisor agent

  2. Supervisor Prompt

    • Type: string

    • Description: Custom prompt for the supervisor, must contain {team_members}

    • Default: System-provided prompt template

  3. Tool Calling Chat Model (Required)

    • Type: BaseChatModel

    • Description: Language model used for decision-making (must support function calling)

    • Compatible Models:

      • ChatOpenAI

      • ChatMistral

      • ChatAnthropic

      • ChatGoogleGenerativeAI

      • GroqChat

  4. Agent Memory (Optional)

    • Type: BaseCheckpointSaver

    • Description: Used to save and restore the agent’s state

  5. Summarization (Optional)

    • Type: boolean

    • Description: Enables final output as a conversation summary

  6. Recursion Limit

    • Type: number

    • Default: 100

    • Description: Maximum number of recursive calls allowed

  7. Input Moderation (Optional)

    • Type: Moderation[]

    • Description: Filters for detecting potentially harmful text

Functionality

  1. Coordination

    • Manages worker agent selection

    • Orchestrates conversation flow

    • Monitors task progress

    • Optimizes task completion

  2. Decision Making

    • Analyzes conversation state

    • Selects appropriate workers

    • Provides worker instructions

    • Ensures task coherence

  3. Process Management

    • Handles conversation initialization

    • Manages state transitions

    • Controls recursion depth

    • Provides optional summarization

Use Cases

  1. Project Management

    • Coordinate multiple specialists

    • Break down complex tasks

    • Monitor progress

    • Ensure goal alignment

  2. Problem Solving

    • Distribute subtasks

    • Combine expert knowledge

    • Synthesize solutions

    • Maintain solution quality

  3. Research Coordination

    • Assign research tasks

    • Manage information gathering

    • Validate findings

    • Compile results

Integration Notes

  • Best performance achieved with GPT-4

  • Requires function-calling capable models

  • Supports multi-modal inputs for compatible models

  • Special handling for various model types

Best Practices

  1. Configuration

    • Set clear supervisor prompts

    • Choose appropriate models

    • Configure memory settings

    • Set reasonable recursion limits

  2. Monitoring

    • Track conversation progress

    • Monitor worker performance

    • Watch for recursion issues

    • Evaluate task completion

  3. Optimization

    • Fine-tune prompts

    • Adjust memory settings

    • Optimize model selection

    • Balance task distribution