Skip to main content
Node Details
-
Name: ConditionAgent_SeqAgents
-
Type: ConditionAgent
-
Category: Sequential Agents
-
Version: 2.0
Parameters
Main Parameters
-
Name (string)
-
Label: Name
-
Description: Name for the Condition Agent
-
Sequential Node (Start | Agent | LLMNode | ToolNode)
-
Label: Start | Agent | LLM | Tool Node
-
Description: Previous nodes in the sequence
-
List: true
-
Chat Model (BaseChatModel)
-
Label: Chat Model
-
Description: Overwrite model to be used for this agent
-
Optional: true
Prompt Parameters
-
System Prompt (string)
-
Label: System Prompt
-
Description: System message for the agent
-
Optional: true
-
Default: Example prompt provided
-
Human Prompt (string)
-
Label: Human Prompt
-
Description: Human message added at the end of the conversation
-
Optional: true
-
Default: Example prompt provided
-
Format Prompt Values (json)
-
Label: Format Prompt Values
-
Description: Assign values to prompt variables
-
Optional: true
-
List: true
Output Configuration
-
JSON Structured Output (datagrid)
-
Label: JSON Structured Output
-
Description: Instruct the LLM to give output in a JSON structured schema
-
Optional: true
Condition Configuration
-
Condition (conditionFunction)
-
Label: Condition
-
Description: Function or table to evaluate the condition
-
Tabs:
a. Condition (Table): Datagrid for defining conditions
b. Condition (Code): JavaScript function for custom condition logic
-
Previous node in the sequential flow
-
Chat model (optional)
-
Prompts and prompt values
-
Condition logic (table or code)
Outputs
-
Next: Connection to the next node if condition is met
-
End: Connection to end the flow if condition is not met
Functionality
-
Initializes with previous nodes and configurations
-
Prepares the agent with system and human prompts
-
Executes the agent to evaluate the current state
-
Applies the condition logic (either table-based or code-based)
-
Determines the next step in the flow based on the condition result
Use Cases
-
Routing conversations based on user intent
-
Implementing decision trees in conversational flows
-
Applying business logic to determine next steps in a process
-
Filtering or categorizing responses before proceeding
Notes
-
The node supports both simple table-based conditions and complex JavaScript-based condition functions
-
It can use structured output from the LLM for more precise decision-making
-
The condition can access various parts of the conversation state, including previous messages and custom variables